cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A351403 G.f. A(x) satisfies: (1 - x) = Product_{i>=1, j>=1} A(x^(i*j)).

This page as a plain text file.
%I A351403 #6 Feb 11 2022 08:11:58
%S A351403 1,-1,2,0,0,4,-5,9,-6,3,4,-9,15,-17,13,-8,0,1,-9,12,-17,15,-25,29,-27,
%T A351403 12,-3,-14,28,-55,63,-54,53,-46,18,32,-57,85,-106,122,-108,43,8,-29,
%U A351403 80,-161,148,-115,104,-78,57,29,-77,89,-99,263,-283,182,-212,133,49
%N A351403 G.f. A(x) satisfies: (1 - x) = Product_{i>=1, j>=1} A(x^(i*j)).
%C A351403 Convolution inverse of A351402.
%F A351403 G.f. A(x) satisfies: (1 - x) = Product_{k>=1} A(x^k)^A000005(k).
%F A351403 G.f.: Product_{k>=1} (1 - x^k)^A007427(k).
%F A351403 G.f.: exp( -Sum_{k>=1} A101035(k) * x^k / k ).
%F A351403 a(0) = 1; a(n) = -(1/n) * Sum_{k=1..n} A101035(k) * a(n-k).
%t A351403 nmax = 60; A007427[n_] := Sum[MoebiusMu[d] MoebiusMu[n/d], {d, Divisors[n]}]; CoefficientList[Series[Product[(1 - x^k)^A007427[k], {k, 1, nmax}], {x, 0, nmax}], x]
%Y A351403 Cf. A000005, A007427, A101035, A117208, A288098, A351402.
%K A351403 sign
%O A351403 0,3
%A A351403 _Ilya Gutkovskiy_, Feb 10 2022