This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A351420 #22 May 12 2023 12:40:53 %S A351420 1,1,1,1,0,2,1,-1,1,6,1,-2,3,-1,24,1,-3,8,-13,8,120,1,-4,16,-48,77, %T A351420 -26,720,1,-5,27,-124,386,-576,194,5040,1,-6,41,-259,1270,-3905,5219, %U A351420 -1142,40320,1,-7,58,-471,3244,-16243,47701,-55567,9736,362880 %N A351420 Square array T(n,k), n >= 1, k >= 1, read by antidiagonals, where column k is the expansion of e.g.f. -log(1 - f^(k-1)(x)), where f(x) = log(1+x). %F A351420 T(n,k) = Sum_{j=1..n} Stirling1(n,j) * T(j,k-1), k>1, T(n,1) = (n-1)!. %e A351420 Square array begins: %e A351420 1, 1, 1, 1, 1, 1, ... %e A351420 1, 0, -1, -2, -3, -4, ... %e A351420 2, 1, 3, 8, 16, 27, ... %e A351420 6, -1, -13, -48, -124, -259, ... %e A351420 24, 8, 77, 386, 1270, 3244, ... %e A351420 120, -26, -576, -3905, -16243, -50375, ... %t A351420 T[n_, 1] := (n - 1)!; T[n_, k_] := T[n, k] = Sum[StirlingS1[n, j] * T[j, k - 1], {j, 1, n}]; Table[T[k, n - k + 1], {n, 1, 10}, {k, 1, n}] // Flatten (* _Amiram Eldar_, Feb 11 2022 *) %o A351420 (PARI) T(n, k) = if(k==1, (n-1)!, sum(j=1, n, stirling(n, j, 1)*T(j, k-1))); %Y A351420 Columns k=1..5 give A000142(n-1), (-1)^(n-1) * A089064(n), A351421, A351422, A351423. %Y A351420 Main diagonal gives A351424. %Y A351420 Cf. A111933, A351429. %K A351420 sign,tabl %O A351420 1,6 %A A351420 _Seiichi Manyama_, Feb 11 2022