cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A351423 Expansion of e.g.f. -log(1 - log(1 + log(1 + log(1 + log(1+x))))).

This page as a plain text file.
%I A351423 #17 Feb 16 2022 04:12:35
%S A351423 1,-3,16,-124,1270,-16243,249776,-4494334,92716855,-2158505443,
%T A351423 55996266046,-1602132913687,50124833578256,-1702501170925098,
%U A351423 62391472267252322,-2453892459756494459,103101294099324376489,-4608723131704380915202
%N A351423 Expansion of e.g.f. -log(1 - log(1 + log(1 + log(1 + log(1+x))))).
%F A351423 a(n) = T(n,5), T(n,k) = Sum_{j=1..n} Stirling1(n,j) * T(j,k-1), k>1, T(n,1) = (n-1)!.
%t A351423 T[n_, 1] := (n - 1)!; T[n_, k_] := T[n, k] = Sum[StirlingS1[n, j] * T[j, k - 1], {j, 1, n}]; a[n_] := T[n, 5]; Array[a, 18] (* _Amiram Eldar_, Feb 11 2022 *)
%o A351423 (PARI) my(N=20, x='x+O('x^N)); Vec(serlaplace(-log(1-log(1+log(1+log(1+log(1+x)))))))
%o A351423 (PARI) T(n, k) = if(k==1, (n-1)!, sum(j=1, n, stirling(n, j, 1)*T(j, k-1)));
%o A351423 a(n) = T(n, 5);
%Y A351423 Column k=5 of A351420.
%Y A351423 Cf. A000359, A351428.
%K A351423 sign
%O A351423 1,2
%A A351423 _Seiichi Manyama_, Feb 11 2022