cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A351434 If n = Product (p_j^k_j) then a(n) = Product ((p_j - 1)^(k_j + 1)).

This page as a plain text file.
%I A351434 #15 Nov 19 2022 04:47:08
%S A351434 1,1,4,1,16,4,36,1,8,16,100,4,144,36,64,1,256,8,324,16,144,100,484,4,
%T A351434 64,144,16,36,784,64,900,1,400,256,576,8,1296,324,576,16,1600,144,
%U A351434 1764,100,128,484,2116,4,216,64,1024,144,2704,16,1600,36,1296,784,3364,64,3600,900,288,1,2304
%N A351434 If n = Product (p_j^k_j) then a(n) = Product ((p_j - 1)^(k_j + 1)).
%H A351434 <a href="/index/Eu#epf">Index entries for sequences computed from exponents in factorization of n</a>.
%H A351434 <a href="/index/Pri#prime_indices">Index entries for sequences computed from indices in prime factorization</a>.
%F A351434 a(n) = A003958(n) * |A023900(n)|.
%F A351434 Sum_{k=1..n} a(k) ~ c * n^3, where c = (1/3) * Product_{p prime} (1 - (3*p^2 - 4*p + 2)/(p*(p^3 - p + 1))) = 0.1161464566... . - _Amiram Eldar_, Nov 19 2022
%p A351434 a:= n-> mul((i[1]-1)^(i[2]+1), i=ifactors(n)[2]):
%p A351434 seq(a(n), n=1..65);  # _Alois P. Heinz_, Feb 11 2022
%t A351434 f[p_, e_] := (p - 1)^(e + 1); a[1] = 1; a[n_] := Times @@ (f @@@ FactorInteger[n]); Table[a[n], {n, 1, 65}]
%o A351434 (PARI) a(n) = my(f=factor(n)); for (k=1, #f~, f[k,1]--; f[k,2]++); factorback(f); \\ _Michel Marcus_, Feb 11 2022
%Y A351434 Cf. A003557, A003958, A003959, A023900, A064549, A326297, A327564, A351419, A351435.
%K A351434 nonn,mult
%O A351434 1,3
%A A351434 _Ilya Gutkovskiy_, Feb 11 2022