This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A351464 #12 Feb 15 2022 20:59:18 %S A351464 1,1,2,1,3,1,4,1,2,2,5,0,6,3,5,1,7,0,8,1,7,4,9,-1,3,5,2,2,10,0,11,1,9, %T A351464 6,11,-2,12,7,11,0,13,1,14,3,4,8,15,-2,4,1,13,4,16,-1,14,1,15,9,17,-5, %U A351464 18,10,6,1,17,2,19,5,17,4,20,-4,21,11,4,6,19,3 %N A351464 Let f be multiplicative with f(prime(k)^e) = k + e*i for any k, e > 0 (where i denotes the imaginary unit); a(n) is the real part of f(n). See A351465 for the imaginary part. %C A351464 Apparently, each integer (from Z) appears in this sequence. %e A351464 For n = 42: %e A351464 - 42 = 2 * 3 * 7 = prime(1)^1 * prime(2)^1 * prime(4)^1, %e A351464 - f(42) = (1+i) * (2+i) * (4+i) = 1 + 13*i, %e A351464 - and a(42) = 1. %p A351464 b:= proc(n) option remember; uses numtheory; %p A351464 mul(pi(i[1])+i[2]*I, i=ifactors(n)[2]) %p A351464 end: %p A351464 a:= n-> Re(b(n)): %p A351464 seq(a(n), n=1..78); # _Alois P. Heinz_, Feb 15 2022 %t A351464 f[p_, e_] := PrimePi[p] + e*I; a[1] = 1; a[n_] := Re[Times @@ f @@@ FactorInteger[n]]; Array[a, 100] (* _Amiram Eldar_, Feb 15 2022 *) %o A351464 (PARI) a(n) = { my (f=factor(n), p=f[,1]~, e=f[,2]~); real(prod (k=1, #p, primepi(p[k]) + I*e[k])) } %Y A351464 Cf. A289310, A351465, A351475. %K A351464 sign,easy %O A351464 1,3 %A A351464 _Rémy Sigrist_, Feb 11 2022