cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A351470 Numbers m such that the largest digit in the decimal expansion of 1/m is 4.

Original entry on oeis.org

25, 225, 250, 693, 2250, 2439, 2475, 2500, 3285, 4095, 4125, 6930, 6993, 22500, 22725, 23125, 23245, 24390, 24750, 24975, 25000, 30825, 32850, 40950, 41250, 41625, 42735, 69300, 69375, 69735, 69930, 71225, 225000, 225225, 227250, 231250, 232450, 238095, 243309, 243900, 247500, 249750
Offset: 1

Views

Author

Keywords

Comments

If k is a term, 10*k is also a term.
First few primitive terms are 25, 225, 693, 2439, 2475, 3285, 4095, 4125, ...
There is no prime up to 2.6*10^8 (see comments in A333237).

Examples

			As 1/25 = 0.04, and 25 is the smallest number m such that the largest digit in the decimal expansion of 1/m is 4, so a(1) = 25.
As 1/693 = 0.001443001443001443..., so 693 is a term.
		

Crossrefs

Cf. A333236.
Similar with largest digit k: A333402 (k=1), A341383 (k=2), A350814 (k=3), this sequence (k=4), A351471 (k=5), A351472 (k=6), A351473 (k=7), A351474 (k=8), A333237 (k=9).

Programs

  • Mathematica
    f[n_] := Union[ Flatten[ RealDigits[ 1/n][[1]] ]];Select[Range@1500000, Max@ f@# == 4 &]
  • Python
    from itertools import count, islice
    from sympy import n_order, multiplicity
    def A351470_gen(startvalue=1): # generator of terms >= startvalue
        for m in count(max(startvalue, 1)):
            m2, m5 = multiplicity(2, m), multiplicity(5, m)
            if max(str(10**(max(m2, m5)+n_order(10, m//2**m2//5**m5))//m)) == '4':
                yield m
    A351470_list = list(islice(A351470_gen(), 10)) # Chai Wah Wu, Feb 14 2022