This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A351471 #18 Feb 16 2022 01:55:24 %S A351471 2,4,8,18,20,22,32,40,66,74,80,180,185,198,200,220,222,320,396,400, %T A351471 444,492,660,666,702,704,738,740,800,803,876,1800,1818,1845,1848,1850, %U A351471 1875,1912,1980,1998,2000,2200,2220,2222,2409,2424,2466,2849,3075,3200,3212,3276,3960,3996,4000 %N A351471 Numbers m such that the largest digit in the decimal expansion of 1/m is 5. %C A351471 If k is a term, 10*k is also a term. %C A351471 First few primitive terms are 2, 4, 8, 18, 22, 32, 66, 74, 185, 198, 222, 396, ... %C A351471 2 and 4649 are the only primes up to 2.6*10^8 (see comments in A333237). %C A351471 Some subsequences: %C A351471 {2, 22, 222, 2222, ...} = A002276 \ {0}. %C A351471 {66, 666, 6666, ...} = A002280 \ {0, 6}. %C A351471 {18, 1818, 181818, ...} = 18 * A094028. %H A351471 <a href="/index/1#1overn">Index entries for sequences related to decimal expansion of 1/n</a>. %e A351471 As 1/8 = 0.125, 8 is a term. %e A351471 As 1/4649 = 0.000215121512151..., 4649 is a term. %t A351471 f[n_] := Union[ Flatten[ RealDigits[ 1/n][[1]] ]]; Select[Range@1500000, Max@ f@# == 5 &] %o A351471 (Python) %o A351471 from itertools import count, islice %o A351471 from sympy import n_order, multiplicity %o A351471 def A351471_gen(startvalue=1): # generator of terms >= startvalue %o A351471 for m in count(max(startvalue, 1)): %o A351471 m2, m5 = multiplicity(2, m), multiplicity(5, m) %o A351471 if max(str(10**(max(m2, m5)+n_order(10, m//2**m2//5**m5))//m)) == '5': %o A351471 yield m %o A351471 A351471_list = list(islice(A351471_gen(), 10)) # _Chai Wah Wu_, Feb 15 2022 %Y A351471 Subsequences: A002276, A002280. %Y A351471 Similar with largest digit k: A333402 (k=1), A341383 (k=2), A350814 (k=3), A351470 (k=4), this sequence (k=5), A351472 (k=6), A351473 (k=7), A351474 (k=8), A333237 (k=9). %Y A351471 Cf. A333236. %K A351471 nonn,base %O A351471 1,1 %A A351471 _Bernard Schott_ and _Robert G. Wilson v_, Feb 14 2022