A351472 Numbers m such that the largest digit in the decimal expansion of 1/m is 6.
6, 15, 16, 24, 39, 60, 64, 88, 96, 150, 156, 160, 165, 219, 240, 246, 273, 275, 375, 378, 384, 390, 399, 462, 600, 606, 615, 624, 625, 640, 792, 822, 858, 880, 888, 956, 960, 975, 984, 1500, 1515, 1536, 1554, 1560, 1584, 1596, 1600, 1606, 1626, 1628, 1638, 1650, 1665, 1776, 2145
Offset: 1
Examples
1/6 = 0.166666..., and 6 is the smallest number m such that the largest digit in the decimal expansion of 1/m is 6, so a(1) = 6. As 1/39 = 0.025641025641..., 39 is a term.
Crossrefs
Programs
-
Mathematica
f[n_] := Union[ Flatten[ RealDigits[ 1/n][[1]] ]]; Select[Range@1500000, Max@ f@# == 6 &]
-
Python
from itertools import count, islice from sympy import n_order, multiplicity def A351472_gen(startvalue=1): # generator of terms >= startvalue for m in count(max(startvalue, 1)): m2, m5 = multiplicity(2, m), multiplicity(5, m) if max(str(10**(max(m2, m5)+n_order(10, m//2**m2//5**m5))//m)) == '6': yield m A351472_list = list(islice(A351472_gen(), 20)) # Chai Wah Wu, Feb 17 2022
Comments