cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A351483 Decimal expansion of log_2(lim_{n->oo} f(3, n)^(1/(3*n))), where f(m, n) is the number of primitive lattice triangulations of m X n rectangle.

This page as a plain text file.
%I A351483 #11 Aug 03 2025 21:05:46
%S A351483 2,0,8,3,8,4,9,7,0,9,7,2,1,0,2,3,2,0,8,2,2,4,2,1,9,2,8,9,4,9,6,1,7,0,
%T A351483 1,3,9,6,4,8,5,1,3,4,2,3,2,4,9,5,5,2,1,3,0,7,9,9,0,5,9,9,1,8,5,5,1,7,
%U A351483 2,9,0,6,9,2,8,1,8,0,5,2,5,1,8,6,6,5,0,8,8
%N A351483 Decimal expansion of log_2(lim_{n->oo} f(3, n)^(1/(3*n))), where f(m, n) is the number of primitive lattice triangulations of m X n rectangle.
%H A351483 S. Yu. Orevkov, <a href="https://arxiv.org/abs/2201.12827">Counting lattice triangulations: Fredholm equations in combinatorics</a>, arXiv:2201.12827 [math.CO], 2022. See Theorem 2, p. 2.
%e A351483 2.0838497097210232082242192894961701...
%Y A351483 Cf. A082640.
%Y A351483 Cf. A351480, A351481, A351482.
%Y A351483 Cf. A351484, A351485, A351486, A351487, A351488.
%K A351483 nonn,cons
%O A351483 1,1
%A A351483 _Stefano Spezia_, Feb 12 2022