This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A351493 #25 May 12 2022 15:18:56 %S A351493 1,0,0,0,4,10,40,210,1904,15120,132600,1293600,14303520,171531360, %T A351493 2223464880,31023392400,464541960960,7424367350400,126124766476800, %U A351493 2269425252931200,43119553374460800,862673918061715200,18126931548822835200,399119899456951411200 %N A351493 Expansion of e.g.f. (1 - x)^(-x^3/6). %H A351493 Seiichi Manyama, <a href="/A351493/b351493.txt">Table of n, a(n) for n = 0..451</a> %F A351493 a(0) = 1; a(n) = (n-1)!/6 * Sum_{k=4..n} k/(k-3) * a(n-k)/(n-k)!. %F A351493 a(n) = n! * Sum_{k=0..floor(n/4)} |Stirling1(n-3*k,k)|/(6^k * (n-3*k)!). %F A351493 a(n) ~ sqrt(2*Pi) * n^(n - 1/3) / (Gamma(1/6) * exp(n)). - _Vaclav Kotesovec_, May 04 2022 %o A351493 (PARI) my(N=30, x='x+O('x^N)); Vec(serlaplace((1-x)^(-x^3/6))) %o A351493 (PARI) my(N=30, x='x+O('x^N)); Vec(serlaplace(exp(-x^3/6*log(1-x)))) %o A351493 (PARI) a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=(i-1)!/6*sum(j=4, i, j/(j-3)*v[i-j+1]/(i-j)!)); v; %o A351493 (PARI) a(n) = n!*sum(k=0, n\4, abs(stirling(n-3*k, k, 1))/(6^k*(n-3*k)!)); %Y A351493 Cf. A351492, A351506, A353229. %K A351493 nonn %O A351493 0,5 %A A351493 _Seiichi Manyama_, May 02 2022