cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A352931 a(n) = A093714(n) - n.

Original entry on oeis.org

0, 1, -1, 1, -1, 1, -1, 3, -1, 3, -2, 2, 4, -4, 4, -4, 6, -3, 3, 1, -5, 3, -5, 5, -5, 1, -1, 3, -5, 5, 1, 5, -5, -1, 3, 5, -7, 5, -5, -1, 3, 5, -7, 5, -5, 5, -1, -3, 3, 5, -9, 1, -5, 5, -5, 1, -1, 3, -5, 5, -3, 1, -1, 3, -5, 5, -3, 1, -1, 3, -5, 7, -3, 7, -1, 1, -5, 5, -4, 2, 4, -6, 4, -4, 4, -8, 8, -4, 8, -4, 0, -4, 0, -2, 4, -2, 4, -8, 4, -4, 6, -4
Offset: 1

Views

Author

N. J. A. Sloane, May 04 2022

Keywords

Comments

From Michael De Vlieger, May 04 2022: (Start)
Zeros in this sequence correspond to fixed points in A093714.
Sequence exhibits intervals where terms have same parity. Parity changes when a run of odd terms in A093714 with even run length occurs. These runs begin with A093714(A351498(k)). Conjecture: the last parity change begins with a(1036044) = -9. (End)
Rival conjecture: The parity changes infinitely often. This would imply that A352932 contains infinitely many terms. - N. J. A. Sloane, May 04 2022

Crossrefs

Programs

A352932 Where the parity of A352931 changes.

Original entry on oeis.org

1, 2, 11, 18, 79, 1788, 15023, 38124, 45053, 1036044, 100280245077
Offset: 1

Views

Author

N. J. A. Sloane, May 04 2022

Keywords

Comments

The terms 15023, 38124, 45053, 1036044 are based on the comments from Scott R. Shannon and Michael De Vlieger in A352588.
In fact a(n) = A351498(n) + 1, although this requires proof (see A351498).

Crossrefs

Programs

  • C
    See Links section.

Extensions

a(9) corrected and a(11) added by Rémy Sigrist, May 06 2022

A351499 Odd m in A352928.

Original entry on oeis.org

1, 9, 15, 75, 105, 315, 525, 735, 945, 1155, 1365, 1575, 1995, 3465, 4305, 5775, 6615, 7035, 8085, 8925, 9765, 10395, 11235, 12495, 12705, 13545, 15015, 19635, 26565, 28875, 31185, 33495, 38115, 45045, 255255, 405405, 525525, 765765, 975975, 1036035, 1786785, 2297295
Offset: 1

Views

Author

Michael De Vlieger, May 03 2022

Keywords

Crossrefs

Programs

  • Mathematica
    nn = 2^20; c = {1}; j = 1; s = 0; u = 1; {1}~Join~Reap[Do[k = u; While[Nand[FreeQ[c, k], CoprimeQ[j, k], k != j + 1], k++]; j = k; AppendTo[c, k]; If[k == u, If[OddQ[u], Sow[u]]; While[MemberQ[c, u], u++]; c = DeleteCases[c, _?(# < u &)]], {i, 2, nn}]][[-1, -1]]
  • Python
    from math import gcd
    from itertools import islice
    def agen(): # generator of terms
        an, aset, mink, seen = 1, {1}, 2, {1}
        yield 1
        while True:
            if mink%2 and mink not in seen: yield mink; seen.add(mink)
            k = mink
            while k in aset or gcd(an, k) != 1 or k-an == 1: k += 1
            an = k; aset.add(an)
            while mink in aset: mink += 1
    print(list(islice(agen(), 42))) # Michael S. Branicky, May 03 2022
Showing 1-3 of 3 results.