cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A351501 a(n) = binomial(n^2 + n - 1, n) / (n^2 + n - 1).

This page as a plain text file.
%I A351501 #29 Jan 01 2024 18:19:42
%S A351501 1,2,15,204,4095,109668,3689595,149846840,7141879503,391139588190,
%T A351501 24218296445200,1673538279265020,127715832778905150,
%U A351501 10670643284149377480,968929726650218004435,95024894699780159868144,10011211830149283223044015
%N A351501 a(n) = binomial(n^2 + n - 1, n) / (n^2 + n - 1).
%C A351501 Empirical: In the ring of symmetric functions over the fraction field Q(q, t), let s(n) denote the Schur function indexed by n. Then (up to sign) a(n) is the coefficient of s(1^n) in nabla^(n) s(n) with q=t=1, where nabla denotes the "nabla operator" on symmetric functions.
%F A351501 a(n) ~ c*exp(n-1/(6*n))*n^(n-5/2), where c = sqrt(e/(2*Pi)). - _Stefano Spezia_, May 04 2022
%F A351501 a(n) = n * A182316(n - 1). - _F. Chapoton_, Sep 22 2023
%t A351501 Table[With[{c=n^2+n-1},Binomial[c,n]/c],{n,20}] (* _Harvey P. Dale_, Jan 01 2024 *)
%o A351501 (Sage) [binomial(n*n+n-1,n)/(n*n+n-1) for n in range(1,29)]
%o A351501 (Python)
%o A351501 from math import comb
%o A351501 def A351501(n): return comb(m := n**2+n-1,n)//m # _Chai Wah Wu_, May 07 2022
%Y A351501 Closely related to A177784. See also A091144.
%Y A351501 Diagonal of A162382. Multiple of A182316.
%K A351501 nonn
%O A351501 1,2
%A A351501 _F. Chapoton_, May 03 2022