cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A351502 Expansion of e.g.f. 1/(1 + log(1 - x)*exp(-x)).

This page as a plain text file.
%I A351502 #20 May 03 2023 12:39:21
%S A351502 1,1,1,2,10,59,373,2736,23504,229029,2477219,29473344,383104588,
%T A351502 5401356583,82069677701,1336740758544,23234632127072,429259519490985,
%U A351502 8399672396793063,173538299521211128,3774815414843398588,86230662745426403771,2063931187442813081881
%N A351502 Expansion of e.g.f. 1/(1 + log(1 - x)*exp(-x)).
%H A351502 Seiichi Manyama, <a href="/A351502/b351502.txt">Table of n, a(n) for n = 0..443</a>
%F A351502 a(0) = 1; a(n) = Sum_{k=1..n} A002741(k) * binomial(n,k) * a(n-k).
%t A351502 With[{nn=30},CoefficientList[Series[1/(1+Log[1-x]Exp[-x]),{x,0,nn}],x] Range[0,nn]!] (* _Harvey P. Dale_, May 03 2023 *)
%o A351502 (PARI) my(N=30, x='x+O('x^N)); Vec(serlaplace(1/(1+log(1-x)*exp(-x))))
%Y A351502 Cf. A002741, A298374, A305407.
%K A351502 nonn
%O A351502 0,4
%A A351502 _Seiichi Manyama_, May 04 2022