This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A351503 #25 Aug 18 2024 19:26:59 %S A351503 1,0,0,6,12,40,900,6048,43680,717120,8658720,102231360,1735525440, %T A351503 28819964160,473955850368,9235543363200,189202617676800, %U A351503 3940225003653120,89804740509434880,2169337606086389760,54085753764912844800,1429100881569205125120 %N A351503 Expansion of e.g.f. 1/(1 + x^2 * log(1 - x)). %H A351503 Seiichi Manyama, <a href="/A351503/b351503.txt">Table of n, a(n) for n = 0..433</a> %F A351503 a(0) = 1; a(n) = n! * Sum_{k=3..n} 1/(k-2) * a(n-k)/(n-k)!. %F A351503 a(n) = n! * Sum_{k=0..floor(n/3)} k! * |Stirling1(n-2*k,k)|/(n-2*k)!. %t A351503 With[{nn=30},CoefficientList[Series[1/(1+x^2 Log[1-x]),{x,0,nn}],x] Range[0,nn]!] (* _Harvey P. Dale_, Aug 18 2024 *) %o A351503 (PARI) my(N=30, x='x+O('x^N)); Vec(serlaplace(1/(1+x^2*log(1-x)))) %o A351503 (PARI) a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=i!*sum(j=3, i, 1/(j-2)*v[i-j+1]/(i-j)!)); v; %o A351503 (PARI) a(n) = n!*sum(k=0, n\3, k!*abs(stirling(n-2*k, k, 1))/(n-2*k)!); %Y A351503 Cf. A052830, A351504. %Y A351503 Cf. A351505, A353228. %K A351503 nonn %O A351503 0,4 %A A351503 _Seiichi Manyama_, May 04 2022