This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A351508 #19 May 19 2025 04:33:00 %S A351508 1,1,23,1386,162154,31354800,9078595483,3682549444112, %T A351508 1994756395887972,1391788744738729470,1216130179327397765925, %U A351508 1301126343608005909401330,1673298722590019165433540916,2547164111922284803722749855516 %N A351508 a(n) = [x^n] Product_{k=1..n} 1/(1 - k*x)^n. %F A351508 a(n) ~ exp(n + 5/3) * n^(2*n - 1/2) / (sqrt(Pi) * 2^(n + 1/2)). - _Vaclav Kotesovec_, Feb 18 2022 %F A351508 a(n) = Sum_{x_1, x_2,..., x_n >= 0 and x_1 + x_2 + ... + x_n = n} Product_{k=1..n} Stirling2(x_k + n,n). - _Seiichi Manyama_, May 18 2025 %t A351508 Table[SeriesCoefficient[Product[1/(1 - k*x)^n, {k,1,n}], {x,0,n}], {n,0,20}] (* _Vaclav Kotesovec_, Feb 18 2022 *) %o A351508 (PARI) a(n) = polcoef(1/prod(k=1, n, 1-k*x+x*O(x^n))^n, n); %Y A351508 Cf. A007820, A350376, A383862, A384060. %Y A351508 Cf. A351507, A384060. %K A351508 nonn %O A351508 0,3 %A A351508 _Seiichi Manyama_, Feb 12 2022