This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A351521 #25 Dec 25 2022 02:11:24 %S A351521 1,4,4,0,4,16,4,0,0,16,4,0,4,16,16,0,4,0,4,0,16,16,4,0,0,16,0,0,4,64, %T A351521 4,0,16,16,16,0,4,16,16,0,4,64,4,0,0,16,4,0,0,0,16,0,4,0,16,0,16,16,4, %U A351521 0,4,16,0,0,16,64,4,0,16,64,4,0,4,16,0,0,16,64 %N A351521 Dirichlet g.f.: Product_{p prime} (1 + 4*p^(-s)). %H A351521 Vaclav Kotesovec, <a href="/A351521/b351521.txt">Table of n, a(n) for n = 1..10000</a> %F A351521 Dirichlet g.f.: zeta(s)^4 * Product_{prime p} (1 + (4 - 15*p^s + 20*p^(2*s) - 10*p^(3*s))/p^(5*s)). %F A351521 a(n) = A008966(n) * A035116(n). - _Enrique Pérez Herrero_, Oct 27 2022 %F A351521 Multiplicative with a(p) = 4, and a(p^e) = 0 for e >= 2. - _Amiram Eldar_, Dec 25 2022 %t A351521 Table[MoebiusMu[n]^2 * 4^PrimeNu[n], {n, 1, 100}] %o A351521 (PARI) for(n=1, 100, print1(direuler(p=2, n, (1 + 4*X))[n], ", ")) %Y A351521 Cf. A074823, A347149. %Y A351521 Cf. A061142, A165824, A165825. %Y A351521 Cf. A008966, A035116. %K A351521 nonn,mult %O A351521 1,2 %A A351521 _Vaclav Kotesovec_, Feb 17 2022