A351522 Square array T(n, k) read by antidiagonals, n, k >= 0; T(n, k) is the number of distinct values in the set { T(i, j) with 0 <= i <= n and 0 <= j <= k and gcd(n-i, k-j) = 1 }.
0, 1, 1, 1, 2, 1, 1, 3, 3, 1, 1, 3, 3, 3, 1, 1, 3, 4, 4, 3, 1, 1, 3, 4, 3, 4, 3, 1, 1, 3, 5, 5, 5, 5, 3, 1, 1, 3, 4, 5, 4, 5, 4, 3, 1, 1, 3, 5, 5, 6, 6, 5, 5, 3, 1, 1, 3, 4, 5, 6, 5, 6, 5, 4, 3, 1, 1, 3, 5, 6, 6, 7, 7, 6, 6, 5, 3, 1, 1, 3, 4, 5, 6, 7, 6, 7, 6, 5, 4, 3, 1
Offset: 0
Examples
Array T(n, k) begins: n\k| 0 1 2 3 4 5 6 7 8 9 10 11 ---+---------------------------------------- 0| 0 1 1 1 1 1 1 1 1 1 1 1 1| 1 2 3 3 3 3 3 3 3 3 3 3 2| 1 3 3 4 4 5 4 5 4 5 4 5 3| 1 3 4 3 5 5 5 5 6 5 6 6 4| 1 3 4 5 4 6 6 6 6 7 6 7 5| 1 3 5 5 6 5 7 7 8 8 8 8 6| 1 3 4 5 6 7 6 8 8 8 8 8 7| 1 3 5 5 6 7 8 7 9 9 9 9 8| 1 3 4 6 6 8 8 9 8 10 10 11 9| 1 3 5 5 7 8 8 9 10 9 11 11 10| 1 3 4 6 6 8 8 9 10 11 10 12 11| 1 3 5 6 7 8 8 9 11 11 12 11
Crossrefs
Cf. A049687.
Programs
-
PARI
{ T = matrix(M=13,M); for (d=1, #T, for (k=1, d, n=d+1-k; w=0; for (i=1, n, for (j=1, k, if (gcd(n-i, k-j)==1, w=bitor(w, 2^T[i,j])))); print1 (T[n,k] = hammingweight(w)", "))) }
-
Python
from math import gcd from functools import cache @cache def T(n, k): return len(set(T(i, j) for i in range(n+1) for j in range(k+1) if gcd(n-i, k-j) == 1)) def auptodiag(maxd): return [T(i, d-i) for d in range(maxd+1) for i in range(d+1)] print(auptodiag(12)) # Michael S. Branicky, Feb 13 2022
Formula
T(n, k) = T(k, n).
T(n, k) <= A049687(n, k).
Comments