cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A351544 a(n) is the largest unitary divisor of sigma(n) such that its every prime factor also divides A003961(n), where A003961 is fully multiplicative with a(p) = nextprime(p), and sigma is the sum of divisors function.

This page as a plain text file.
%I A351544 #11 Feb 17 2022 00:02:10
%S A351544 1,3,1,1,1,3,1,3,1,9,1,1,1,3,1,1,1,3,1,21,1,9,1,15,1,3,5,1,1,9,1,9,1,
%T A351544 27,1,1,1,3,1,9,1,3,1,3,1,9,1,1,1,3,1,1,1,15,1,3,5,9,1,21,1,3,1,1,7,9,
%U A351544 1,9,1,9,1,15,1,3,1,1,1,3,1,3,1,9,1,1,1,3,5,9,1,9,1,3,1,9,1,9,1,9,13,7,1,27
%N A351544 a(n) is the largest unitary divisor of sigma(n) such that its every prime factor also divides A003961(n), where A003961 is fully multiplicative with a(p) = nextprime(p), and sigma is the sum of divisors function.
%H A351544 Antti Karttunen, <a href="/A351544/b351544.txt">Table of n, a(n) for n = 1..65537</a>
%H A351544 <a href="/index/Pri#prime_indices">Index entries for sequences computed from indices in prime factorization</a>
%H A351544 <a href="/index/Si#SIGMAN">Index entries for sequences related to sigma(n)</a>
%F A351544 a(n) = Product_{p^e || A000203(n)} p^(e*[p divides A003961(n)]), where [ ] is the Iverson bracket, returning 1 if p is a divisor of A003961(n), and 0 otherwise. Here p^e is the largest power of prime p dividing sigma(n).
%F A351544 a(n) = A000203(n) / A351546(n).
%F A351544 For all n >= 1, a(n) is a multiple of A351545(n).
%o A351544 (PARI)
%o A351544 A003961(n) = { my(f = factor(n)); for(i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); };
%o A351544 A351544(n) = { my(s=sigma(n),f=factor(s),u=A003961(n)); prod(k=1,#f~,if(!(u%f[k,1]), f[k,1]^f[k,2], 1)); };
%Y A351544 Cf. A000203, A003961, A351545, A351546.
%Y A351544 Cf. A342671, A349161, A349162.
%K A351544 nonn
%O A351544 1,2
%A A351544 _Antti Karttunen_, Feb 16 2022