cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A351545 a(n) is the largest unitary divisor of sigma(n) such that its every prime factor p also divides A003961(n), and valuation(sigma(n),p) >= valuation(A003961(n),p).

This page as a plain text file.
%I A351545 #11 Feb 17 2022 00:02:05
%S A351545 1,3,1,1,1,3,1,1,1,9,1,1,1,3,1,1,1,3,1,7,1,9,1,5,1,3,1,1,1,9,1,1,1,27,
%T A351545 1,1,1,3,1,1,1,3,1,1,1,9,1,1,1,3,1,1,1,3,1,1,5,9,1,7,1,3,1,1,7,9,1,9,
%U A351545 1,9,1,1,1,3,1,1,1,3,1,1,1,9,1,1,1,3,5,1,1,9,1,1,1,9,1,1,1,9,13,1,1,27
%N A351545 a(n) is the largest unitary divisor of sigma(n) such that its every prime factor p also divides A003961(n), and valuation(sigma(n),p) >= valuation(A003961(n),p).
%H A351545 Antti Karttunen, <a href="/A351545/b351545.txt">Table of n, a(n) for n = 1..65537</a>
%H A351545 <a href="/index/Pri#prime_indices">Index entries for sequences computed from indices in prime factorization</a>
%H A351545 <a href="/index/Si#SIGMAN">Index entries for sequences related to sigma(n)</a>
%F A351545 a(n) = Product_{p^e || A000203(n)} p^(e*[p divides A003961(n) but p^(1+e) does not divide A003961(n)]), where [ ] is the Iverson bracket, returning 1 if the condition holds, and 0 otherwise. Here p^e is the largest power of prime p dividing sigma(n).
%F A351545 a(n) = A000203(n) / A351547(n).
%F A351545 For all n >= 1, a(n) is a divisor of A351544(n), which is a divisor of A000203(n).
%o A351545 (PARI)
%o A351545 A003961(n) = { my(f = factor(n)); for(i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); };
%o A351545 A351545(n) = { my(s=sigma(n),f=factor(s),u=A003961(n)); prod(k=1,#f~,if(!(u%f[k,1]) && (f[k,2]>=valuation(u,f[k,1])), f[k,1]^f[k,2], 1)); };
%Y A351545 Cf. A000203, A003961, A351544, A351547.
%K A351545 nonn
%O A351545 1,2
%A A351545 _Antti Karttunen_, Feb 16 2022