cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A351546 a(n) is the largest unitary divisor of sigma(n) coprime with A003961(n), where A003961 is fully multiplicative with a(p) = nextprime(p), and sigma is the sum of divisors function.

This page as a plain text file.
%I A351546 #20 Jul 09 2022 18:31:32
%S A351546 1,1,4,7,6,4,8,5,13,2,12,28,14,8,24,31,18,13,20,2,32,4,24,4,31,14,8,
%T A351546 56,30,8,32,7,48,2,48,91,38,20,56,10,42,32,44,28,78,8,48,124,57,31,72,
%U A351546 98,54,8,72,40,16,10,60,8,62,32,104,127,12,16,68,14,96,16,72,13,74,38,124,140,96,56,80,62,121,14,84
%N A351546 a(n) is the largest unitary divisor of sigma(n) coprime with A003961(n), where A003961 is fully multiplicative with a(p) = nextprime(p), and sigma is the sum of divisors function.
%H A351546 Antti Karttunen, <a href="/A351546/b351546.txt">Table of n, a(n) for n = 1..20000</a>
%H A351546 <a href="/index/Pri#prime_indices">Index entries for sequences computed from indices in prime factorization</a>
%H A351546 <a href="/index/Si#SIGMAN">Index entries for sequences related to sigma(n)</a>
%F A351546 a(n) = Product_{p^e || A000203(n)} p^(e*[p does not divide A003961(n)]), where [ ] is the Iverson bracket, returning 0 if p is a divisor of A003961(n), and 1 otherwise. Here p^e is the largest power of each prime p dividing sigma(n).
%F A351546 a(n) = A000203(n) / A351544(n).
%F A351546 a(n) = A353666(n) * A353668(n) = A351547(n) / A354997(n). - _Antti Karttunen_, Jul 09 2022
%e A351546 For n = 672 = 2^5 * 3^1 * 7^1, and the largest unitary divisor of the sigma(672) [= 2^5 * 3^2 * 7^1] coprime with A003961(672) = 13365 = 3^5 * 5^1 * 11^1 is 2^5 * 7^1 = 224, therefore a(672) = 224.
%o A351546 (PARI)
%o A351546 A003961(n) = { my(f = factor(n)); for(i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); };
%o A351546 A351546(n) = { my(f=factor(sigma(n)),u=A003961(n)); prod(k=1,#f~,f[k,1]^((0!=(u%f[k,1]))*f[k,2])); };
%Y A351546 Cf. A000203, A003961, A351544, A351547, A351551, A351552, A353666 [gcd(a(n),n)], A353667, A353668, A353633, A354997.
%Y A351546 Cf. A342671, A349161, A349162.
%K A351546 nonn
%O A351546 1,3
%A A351546 _Antti Karttunen_, Feb 16 2022