cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A351549 Numbers k for which k * gcd(sigma(k), A019565(k)) is equal to sigma(k) * gcd(k, A019565(k)).

This page as a plain text file.
%I A351549 #25 Aug 19 2025 09:33:04
%S A351549 1,1456,15480,114660,2244600,3894768,25108200,27052704,65021040,
%T A351549 112402080,1973921400
%N A351549 Numbers k for which k * gcd(sigma(k), A019565(k)) is equal to sigma(k) * gcd(k, A019565(k)).
%C A351549 Numbers k such that their abundancy index [sigma(k)/k] is equal to A351557(k)/A351556(k).
%C A351549 Question: If the above ratio is neither 1 nor 2, must it then be > 2? Are all even terms abundant?
%C A351549 a(12) > 2281701376 if it exists.
%H A351549 Antti Karttunen, <a href="https://oeis.org/plot2a?name1=A351557&amp;name2=A351556&amp;tform1=untransformed&amp;tform2=untransformed&amp;shift=0&amp;radiop1=ratio&amp;drawlines=true">Ratio A351557(n)/A351556(n) plotted with OEIS Plot2 tool</a>
%H A351549 <a href="/index/O#opnseqs">Index entries for sequences where odd perfect numbers must occur, if they exist at all</a>
%o A351549 (PARI)
%o A351549 A019565(n) = { my(m=1, p=1); while(n>0, p = nextprime(1+p); if(n%2, m *= p); n >>= 1); (m); };
%o A351549 isA351549(n) = { my(s=sigma(n), z=A019565(n)); (n*gcd(s,z))==(s*gcd(n,z)); };
%Y A351549 Cf. A000203, A005101, A007947, A019565, A080398, A351556, A351557, A351558, A351559.
%Y A351549 Subsequence of A386424.
%Y A351549 Cf. also A351458, A351548.
%K A351549 nonn,more
%O A351549 1,2
%A A351549 _Antti Karttunen_, Feb 19 2022