This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A351555 #11 Feb 18 2022 08:06:14 %S A351555 0,0,0,1,1,0,0,1,1,0,1,1,1,0,0,1,1,1,1,0,0,0,1,0,1,1,0,0,2,0,0,1,0,0, %T A351555 1,2,1,1,1,0,2,0,1,1,2,0,1,1,2,1,1,1,1,0,1,1,0,1,2,0,1,0,1,1,1,0,1,1, %U A351555 0,0,1,1,1,1,1,2,1,1,1,1,1,1,2,0,1,1,0,1,2,1,0,1,0,0,1,1,1,1,1,1,2,0,1,2,0 %N A351555 a(n) is the number of odd prime factors of sigma(n) that do not divide A003961(n) and the valuation(n, p) is different from valuation(sigma(n), p). %H A351555 Antti Karttunen, <a href="/A351555/b351555.txt">Table of n, a(n) for n = 1..65537</a> %H A351555 <a href="/index/Pri#prime_indices">Index entries for sequences computed from indices in prime factorization</a> %H A351555 <a href="/index/Si#SIGMAN">Index entries for sequences related to sigma(n)</a> %o A351555 (PARI) %o A351555 A003961(n) = { my(f = factor(n)); for(i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); }; %o A351555 A351555(n) = { my(s=sigma(n),f=factor(s),u=A003961(n)); sum(k=1,#f~,if((f[k,1]%2) && 0!=(u%f[k,1]), (valuation(n,f[k,1])!=f[k,2]), 0)); }; %Y A351555 Cf. A000203, A003961, A351551, A351554 (positions of zeros), A351553 (even terms there), A351543. %K A351555 nonn %O A351555 1,29 %A A351555 _Antti Karttunen_, Feb 16 2022