A351584 Triangle read by rows: T(n,k) = A(k,n-k), 1 <= k < n, 2 <= n, where A(m,n) is the number of distinct strings consisting of one X, 2*m Y's and 2*n Z's in which the X lies to the right of at least m Y's and at least n Z's.
16, 53, 53, 124, 306, 124, 240, 1103, 1103, 240, 412, 3043, 5664, 3043, 412, 651, 7056, 21095, 21095, 7056, 651, 968, 14476, 63480, 101950, 63480, 14476, 968, 1374, 27114, 163986, 386249, 386249, 163986, 27114, 1374, 1880, 47331, 377616, 1226540, 1798776, 1226540, 377616, 47331, 1880
Offset: 2
Examples
Triangle starts: 16; 53, 53; 124, 306, 124; 240, 1103, 1103, 240; 412, 3043, 5664, 3043, 412; ...
Links
- Stephen B. Connor and Christopher J. Fewster, Integrals of incomplete beta functions, with applications to order statistics, random walks and string enumeration, Brazilian Journal of Probability and Statistics 2022, Vol. 36, No. 1, 185-198; arXiv version, arXiv:2104.12216 [math.CA], 201.
Programs
-
Maple
T:=(n,k)->(4*(n - k)*k + 3*n + 2)*binomial(2*n + 2, 2*k + 1)/(4*n + 4) - n*binomial(n, k)^2/2; [seq(seq(T(n,k),k=1..n-1),n=2..10)];
-
Mathematica
t[n_,k_]:=(4*k*(n-k)+3*n+2)/(4*n+4)*Binomial[2*n+2,2*k+1]- (n/2)*Binomial[n,k]^2; Table[t[n,k],{n,2,10},{k,1,n-1}]
Formula
T(n,k) = (4*(n - k)*k + 3*n + 2)*binomial(2*n + 2, 2*k + 1)/(4*n + 4) - n*binomial(n, k)^2/2. See Connor & Fewster (2022).
Comments