cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A351587 Number of minimal edge covers in the n-cycle complement graph.

This page as a plain text file.
%I A351587 #13 Jun 14 2025 12:11:42
%S A351587 0,1,5,25,133,859,5781,40923,313005,2541251,21725314,195840223,
%T A351587 1855631053,18408258491,190764140901,2060930694871,23161639995126,
%U A351587 270260975209117,3268719600517612,40914280736043141,529233440391510248,7065125832189189159,97221637266999732570
%N A351587 Number of minimal edge covers in the n-cycle complement graph.
%H A351587 Andrew Howroyd, <a href="/A351587/b351587.txt">Table of n, a(n) for n = 3..100</a>
%H A351587 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/CycleComplementGraph.html">Cycle Complement Graph</a>.
%H A351587 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/MinimalEdgeCover.html">Minimal Edge Cover</a>.
%F A351587 a(n) = Sum_{i=0..floor(n/2)} Sum{j=0..floor((n-2*i)/3)} (-1)^i * n * ((n-i-2*j-1)! / (i!*j!)) * [x^(n-2*i-3*j)] ((2*exp(x)-1)^i * exp(x)^j * exp(-x - x^2/2 + x*exp(x))). - _Andrew Howroyd_, Jun 14 2025
%o A351587 (PARI) a(n)={sum(i=0, n\2, sum(j=0, (n-2*i)\3, my(r=n-2*i-3*j, g=exp(x + O(x*x^r))); (-1)^i*n*((n-i-2*j-1)!/(i!*j!))*polcoef((2*g-1)^i*exp(j*x -x - x^2/2 + x*g), r)))} \\ _Andrew Howroyd_, Jun 14 2025
%Y A351587 Cf. A351588, A356212, A378862.
%K A351587 nonn
%O A351587 3,3
%A A351587 _Eric W. Weisstein_, Feb 14 2022
%E A351587 a(9)-a(12) from _Andrew Howroyd_, Feb 21 2022
%E A351587 a(13) onwards from _Andrew Howroyd_, Jun 14 2025