cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A351588 Number of minimal edge covers in the n-path complement graph.

This page as a plain text file.
%I A351588 #16 Jun 14 2025 08:57:26
%S A351588 0,0,0,1,7,34,174,1079,7055,48796,366180,2928387,24726556,220572828,
%T A351588 2071469527,20393131971,209934610376,2254860549906,25210893460938,
%U A351588 292826210789807,3527105947667676,43985152403166462,567048383126842506,7546842245268945427,103560659196050026908
%N A351588 Number of minimal edge covers in the n-path complement graph.
%H A351588 Andrew Howroyd, <a href="/A351588/b351588.txt">Table of n, a(n) for n = 1..100</a>
%H A351588 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/MinimalEdgeCover.html">Minimal Edge Cover</a>.
%H A351588 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/PathComplementGraph.html">Path Complement Graph</a>.
%F A351588 a(n) = Sum_{i=0..floor(n/2)} Sum{j=0..floor((n-2*i)/3)} (-1)^i * binomial(i+j,i) * binomial(n-i-2*j,i+j) * (n-2*i-3*j)! * [x^(n-2*i-3*j)] ((2*exp(x)-1)^i * exp(x)^j * exp(-x - x^2/2 + x*exp(x))). - _Andrew Howroyd_, Jun 14 2025
%o A351588 (PARI) a(n)={sum(i=0, n\2, sum(j=0, (n-2*i)\3, my(r=n-2*i-3*j, g=exp(x + O(x*x^r))); (-1)^i*binomial(i+j,i)*binomial(n-i-2*j,i+j)*(r)!*polcoef((2*g-1)^i*exp(j*x -x - x^2/2 + x*g), r)))} \\ _Andrew Howroyd_, Jun 14 2025
%Y A351588 Cf. A302719, A302749, A351587.
%K A351588 nonn
%O A351588 1,5
%A A351588 _Eric W. Weisstein_, Feb 14 2022
%E A351588 a(9)-a(12) from _Andrew Howroyd_, Feb 21 2022
%E A351588 a(13) onwards from _Andrew Howroyd_, Jun 14 2025