This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A351589 #10 Feb 16 2025 08:34:02 %S A351589 0,2,74,2228,100494,6014932,453143662,41921209920,4639656895118, %T A351589 603202689990836,90714189165482310,15583340701180474312, %U A351589 3025677781064563172326,658038493760685537784572,159065982382639942877853134,42449055613405195868802686816 %N A351589 Number of minimal edge covers in the n-cocktail party graph. %H A351589 Andrew Howroyd, <a href="/A351589/b351589.txt">Table of n, a(n) for n = 1..100</a> %H A351589 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/CocktailPartyGraph.html">Cocktail Party Graph</a> %H A351589 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/MinimalEdgeCover.html">Minimal Edge Cover</a> %F A351589 a(n) = Sum_{k=0..n} (-1)^(n-k) * binomial(n,k) * (2*k)! * [x^(2*k)] B(n-k,x), where B(k,x) = (2*exp(x) - 1)^k * exp(-x - x^2/2 + x*exp(x)). - _Andrew Howroyd_, Feb 21 2022 %o A351589 (PARI) a(n)={my(x=x+O(x^(2*n+1)), p=exp(-x - x^2/2 + x*exp(x)), q=2*exp(x) - 1); sum(k=0, n, (-1)^(n-k)*binomial(n,k)*(2*k)!*polcoef(q^(n-k)*p, 2*k))} \\ _Andrew Howroyd_, Feb 21 2022 %Y A351589 Cf. A053530, A297029, A297474, A351588. %K A351589 nonn %O A351589 1,2 %A A351589 _Eric W. Weisstein_, Feb 14 2022 %E A351589 Terms a(5) and beyond from _Andrew Howroyd_, Feb 21 2022