This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A351593 #9 Mar 13 2022 11:14:19 %S A351593 0,1,1,1,1,2,1,2,2,2,2,4,2,4,3,5,4,6,4,8,6,9,6,12,7,14,10,16,11,20,13, %T A351593 24,16,28,18,34,21,40,26,46,30,56,34,64,41,75,48,88,54,102,64,118,73, %U A351593 138,84,159,98,182,112,210,128,242,148,276,168,318 %N A351593 Number of odd-length integer partitions of n into parts that are alternately equal and strictly decreasing. %C A351593 Also odd-length partitions whose run-lengths are all 2's, except for the last, which is 1. %e A351593 The a(1) = 1 through a(15) = 6 partitions (A..F = 10..15): %e A351593 1 2 3 4 5 6 7 8 9 A B C D E F %e A351593 221 331 332 441 442 443 552 553 554 663 %e A351593 551 661 662 771 %e A351593 33221 44221 44331 %e A351593 55221 %t A351593 Table[Length[Select[IntegerPartitions[n],OddQ[Length[#]]&&And@@Table[If[EvenQ[i],#[[i]]!=#[[i+1]],#[[i]]==#[[i+1]]],{i,Length[#]-1}]&]],{n,0,30}] %Y A351593 The even-length ordered version is A003242, ranked by A351010. %Y A351593 The opposite version is A053251, even-length A351007, any length A351006. %Y A351593 This is the odd-length case of A351005, even-length A035457. %Y A351593 With only equalities we get: %Y A351593 - opposite any length: A351003 %Y A351593 - opposite odd-length: A000009 (except at 0) %Y A351593 - opposite even-length: A351012 %Y A351593 - any length: A351004 %Y A351593 - odd-length: A351594 %Y A351593 - even-length: A035363 %Y A351593 Without equalities we get: %Y A351593 - opposite any length: A122129 (apparently) %Y A351593 - opposite odd-length: A122130 (apparently) %Y A351593 - opposite even-length: A351008 %Y A351593 - any length: A122135 (apparently) %Y A351593 - odd-length: A351595 %Y A351593 - even-length: A122134 (apparently) %Y A351593 Cf. A000070, A000984, A027383, A053738, A236559, A236914, A350842, A350844. %K A351593 nonn %O A351593 0,6 %A A351593 _Gus Wiseman_, Feb 23 2022