This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A351594 #6 Mar 13 2022 19:00:49 %S A351594 0,1,1,2,1,3,2,4,2,7,3,9,4,13,6,19,6,26,10,35,12,49,16,64,20,87,27, %T A351594 115,32,151,44,195,53,256,69,328,84,421,108,537,130,682,167,859,202, %U A351594 1085,252,1354,305,1694,380,2104,456,2609,564,3218,676,3968,826,4863 %N A351594 Number of odd-length integer partitions y of n that are alternately constant, meaning y_i = y_{i+1} for all odd i. %C A351594 These are partitions with all even run-lengths except for the last, which is odd. %e A351594 The a(1) = 1 through a(9) = 7 partitions: %e A351594 (1) (2) (3) (4) (5) (6) (7) (8) (9) %e A351594 (111) (221) (222) (331) (332) (333) %e A351594 (11111) (22111) (441) %e A351594 (1111111) (22221) %e A351594 (33111) %e A351594 (2211111) %e A351594 (111111111) %t A351594 Table[Length[Select[IntegerPartitions[n],OddQ[Length[#]]&&And@@Table[#[[i]]==#[[i+1]],{i,1,Length[#]-1,2}]&]],{n,0,30}] %Y A351594 The ordered version (compositions) is A016116 shifted right once. %Y A351594 All odd-length partitions are counted by A027193. %Y A351594 The opposite version is A117409, even-length A351012, any length A351003. %Y A351594 Replacing equal with unequal relations appears to give: %Y A351594 - any length: A122129 %Y A351594 - odd length: A122130 %Y A351594 - even length: A351008 %Y A351594 - opposite any length: A122135 %Y A351594 - opposite odd length: A351595 %Y A351594 - opposite even length: A122134 %Y A351594 This is the odd-length case of A351004, even-length A035363. %Y A351594 The case that is also strict at even indices is: %Y A351594 - any length: A351005 %Y A351594 - odd length: A351593 %Y A351594 - even length: A035457 %Y A351594 - opposite any length: A351006 %Y A351594 - opposite odd length: A053251 %Y A351594 - opposite even length: A351007 %Y A351594 A reverse version is A096441; see also A349060. %Y A351594 Cf. A000009, A000041, A000070, A000984, A003242, A027383, A053738, A236559, A236914, A350842. %K A351594 nonn %O A351594 0,4 %A A351594 _Gus Wiseman_, Feb 24 2022