This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A351595 #6 Mar 13 2022 11:14:25 %S A351595 0,1,1,1,1,2,2,3,4,5,6,9,10,13,16,20,24,30,35,44,52,63,74,90,105,126, %T A351595 148,175,204,242,280,330,382,446,515,600,690,800,919,1060,1214,1398, %U A351595 1595,1830,2086,2384,2711,3092,3506,3988,4516,5122,5788,6552,7388,8345 %N A351595 Number of odd-length integer partitions y of n such that y_i > y_{i+1} for all even i. %e A351595 The a(1) = 1 through a(12) = 10 partitions (A..C = 10..12): %e A351595 1 2 3 4 5 6 7 8 9 A B C %e A351595 221 321 331 332 432 442 443 543 %e A351595 421 431 441 532 542 552 %e A351595 521 531 541 551 642 %e A351595 621 631 632 651 %e A351595 721 641 732 %e A351595 731 741 %e A351595 821 831 %e A351595 33221 921 %e A351595 43221 %t A351595 Table[Length[Select[IntegerPartitions[n],OddQ[Length[#]]&&And@@Table[#[[i]]>#[[i+1]],{i,2,Length[#]-1,2}]&]],{n,0,30}] %Y A351595 The ordered version (compositions) is A000213 shifted right once. %Y A351595 All odd-length partitions are counted by A027193. %Y A351595 The opposite appears to be A122130, even-length A351008, any length A122129. %Y A351595 This appears to be the odd-length case of A122135, even-length A122134. %Y A351595 The case that is constant at odd indices: %Y A351595 - any length: A351005 %Y A351595 - odd length: A351593 %Y A351595 - even length: A035457 %Y A351595 - opposite any length: A351006 %Y A351595 - opposite odd length: A053251 %Y A351595 - opposite even length: A351007 %Y A351595 For equality instead of inequality: %Y A351595 - any length: A351003 %Y A351595 - odd-length: A000009 (except at 0) %Y A351595 - even-length: A351012 %Y A351595 - opposite any length: A351004 %Y A351595 - opposite odd-length: A351594 %Y A351595 - opposite even-length: A035363 %Y A351595 Cf. A000041, A000070, A003242, A027383, A236559, A236914, A350842. %K A351595 nonn %O A351595 0,6 %A A351595 _Gus Wiseman_, Feb 25 2022