cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A351605 a(n) = n^7 * Sum_{d^2|n} 1 / d^7.

This page as a plain text file.
%I A351605 #30 Nov 14 2022 01:39:45
%S A351605 1,128,2187,16512,78125,279936,823543,2113536,4785156,10000000,
%T A351605 19487171,36111744,62748517,105413504,170859375,270548992,410338673,
%U A351605 612499968,893871739,1290000000,1801088541,2494357888,3404825447,4622303232,6103593750,8031810176,10465136172
%N A351605 a(n) = n^7 * Sum_{d^2|n} 1 / d^7.
%H A351605 Seiichi Manyama, <a href="/A351605/b351605.txt">Table of n, a(n) for n = 1..10000</a>
%F A351605 Multiplicative with a(p^e) = p^7*(p^(7*e) - p^(7*floor((e-1)/2)))/(p^7 - 1). - _Sebastian Karlsson_, Feb 25 2022
%F A351605 Sum_{k=1..n} a(k) ~ c * n^8, where c = zeta(9)/8 = 0.125251... . - _Amiram Eldar_, Nov 13 2022
%t A351605 f[p_, e_] := p^7*(p^(7*e) - p^(7*Floor[(e - 1)/2]))/(p^7 - 1); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 30] (* _Amiram Eldar_, Nov 13 2022 *)
%o A351605 (PARI) a(n) = n^7*sumdiv(n, d, if (issquare(d), 1/sqrtint(d^7))); \\ _Michel Marcus_, Feb 15 2022
%Y A351605 Sequences of the form n^k * Sum_{d^2|n} 1/d^k for k = 0..10: A046951 (k=0), A340774 (k=1), A351600 (k=2), A351601 (k=3), A351602 (k=4), A351603 (k=5), A351604 (k=6), this sequence (k=7), A351606 (k=8), A351607 (k=9), A351608 (k=10).
%Y A351605 Cf. A013667.
%K A351605 nonn,mult
%O A351605 1,2
%A A351605 _Wesley Ivan Hurt_, Feb 14 2022