This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A351641 #9 Jan 28 2023 22:08:02 %S A351641 1,0,1,0,1,1,0,1,2,1,0,1,5,3,1,0,1,8,12,4,1,0,1,17,28,22,5,1,0,1,26, %T A351641 81,68,35,6,1,0,1,45,177,251,135,51,7,1,0,1,76,410,704,610,236,70,8,1, %U A351641 0,1,121,906,2068,2086,1266,378,92,9,1 %N A351641 Triangle read by rows: T(n,k) is the number of length n word structures with all distinct runs using exactly k different symbols. %C A351641 Permuting the symbols will not change the structure. %C A351641 Equivalently, T(n,k) is the number of restricted growth strings [s(0), s(1), ..., s(n-1)] where s(0)=0 and s(i) <= 1 + max(prefix) for i >= 1, the maximum value is k and all runs are distinct. %H A351641 Andrew Howroyd, <a href="/A351641/b351641.txt">Table of n, a(n) for n = 0..1325</a> (rows 0..50) %F A351641 T(n,k) = A351640(n,k)/k!. %e A351641 Triangle begins: %e A351641 1; %e A351641 0, 1; %e A351641 0, 1, 1; %e A351641 0, 1, 2, 1; %e A351641 0, 1, 5, 3, 1; %e A351641 0, 1, 8, 12, 4, 1; %e A351641 0, 1, 17, 28, 22, 5, 1; %e A351641 0, 1, 26, 81, 68, 35, 6, 1; %e A351641 0, 1, 45, 177, 251, 135, 51, 7, 1; %e A351641 ... %e A351641 The T(4,1) = 1 word is 1111. %e A351641 The T(4,2) = 5 words are 1112, 1121, 1122, 1211, 1222. %e A351641 The T(4,3) = 3 words are 1123, 1223, 1233. %e A351641 The T(4,4) = 1 word is 1234. %o A351641 (PARI) \\ here LahI is A111596 as row polynomials. %o A351641 LahI(n, y)={sum(k=1, n, y^k*(-1)^(n-k)*(n!/k!)*binomial(n-1, k-1))} %o A351641 S(n)={my(p=prod(k=1, n, 1 + y*x^k + O(x*x^n))); 1 + sum(i=1, (sqrtint(8*n+1)-1)\2, polcoef(p, i, y)*LahI(i, y))} %o A351641 R(q)={[subst(serlaplace(p), y, 1) | p<-Vec(q)]} %o A351641 T(n)={my(q=S(n), v=concat([1], sum(k=1, n, R(q^k-1)*sum(r=k, n, y^r*binomial(r, k)*(-1)^(r-k)/r!) ))); [Vecrev(p) | p<-v]} %o A351641 { my(A=T(10)); for(n=1, #A, print(A[n])) } %Y A351641 Row sums are A351642. %Y A351641 Partial row sums include A000007, A000012, A351018, A351644. %Y A351641 Column k=3 is A351643. %Y A351641 Cf. A111596, A351637, A351640. %K A351641 nonn,tabl %O A351641 0,9 %A A351641 _Andrew Howroyd_, Feb 15 2022