cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A351647 Sum of the squares of the odd proper divisors of n.

This page as a plain text file.
%I A351647 #36 Oct 11 2023 03:54:16
%S A351647 0,1,1,1,1,10,1,1,10,26,1,10,1,50,35,1,1,91,1,26,59,122,1,10,26,170,
%T A351647 91,50,1,260,1,1,131,290,75,91,1,362,179,26,1,500,1,122,341,530,1,10,
%U A351647 50,651,299,170,1,820,147,50,371,842,1,260,1,962,581,1,195,1220,1,290
%N A351647 Sum of the squares of the odd proper divisors of n.
%H A351647 Seiichi Manyama, <a href="/A351647/b351647.txt">Table of n, a(n) for n = 1..10000</a>
%H A351647 <a href="/index/Su#sums_of_divisors">Index entries for sequences related to sums of divisors</a>.
%F A351647 a(n) = Sum_{d|n, d<n, d odd} d^2.
%F A351647 G.f.: Sum_{k>=1} (2*k-1)^2 * x^(4*k-2) / (1 - x^(2*k-1)). - _Ilya Gutkovskiy_, Mar 02 2022
%F A351647 From _Amiram Eldar_, Oct 11 2023: (Start)
%F A351647 a(n) = A050999(n) - n^2*A000035(n).
%F A351647 Sum_{k=1..n} a(k) ~ c * n^2, where c = (zeta(3)-1)/6 = 0.0336761505... . (End)
%e A351647 a(10) = 26; a(10) = Sum_{d|10, d<10, d odd} d^2 = 1^2 + 5^2 = 26.
%t A351647 f[2, e_] := 1; f[p_, e_] := (p^(2*e+2) - 1)/(p^2 - 1); a[1] = 0; a[n_] := Times @@ f @@@ FactorInteger[n] - If[OddQ[n], n^2, 0]; Array[a, 60] (* _Amiram Eldar_, Oct 11 2023 *)
%o A351647 (PARI) a(n) = sumdiv(n, d, if ((d%2) && (d<n), d^2)); \\ _Michel Marcus_, Mar 02 2022
%Y A351647 Sum of the k-th powers of the odd proper divisors of n for k=0..10: A091954 (k=0), A091570 (k=1), this sequence (k=2), A352031 (k=3), A352032 (k=4), A352033 (k=5), A352034 (k=6), A352035 (k=7), A352036 (k=8), A352037 (k=9), A352038 (k=10).
%Y A351647 Cf. A000035, A002117, A050999.
%K A351647 nonn,easy
%O A351647 1,6
%A A351647 _Wesley Ivan Hurt_, Mar 01 2022