This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A351652 #10 Apr 11 2022 21:55:14 %S A351652 1,2,4,3,5,9,6,10,7,11,8,12,16,13,17,14,18,15,20,25,19,26,21,27,22,36, %T A351652 23,30,24,28,37,29,38,31,39,32,40,33,49,34,41,35,42,50,43,51,44,64,45, %U A351652 65,46,66,47,55,48,56,68,53,72,57,81,52,82,54,83,58,84,59 %N A351652 a(1) = 1; for n > 1, a(n) is the smallest positive integer not occurring earlier such that the intersection of the periodic parts of the continued fractions for square roots of a(n) and a(n-1) is the empty set. %C A351652 Conjecture: This is a permutation of the positive integers. %C A351652 The conjecture is true: we can always extend the sequence with a square, so eventuality every square will appear; also, after a square, we can always extend the sequence with the least number not yet in the sequence. - _Rémy Sigrist_, Mar 12 2022 %C A351652 The periodic part of the continued fraction for the square root of a square is the empty set. %e A351652 n a(n) Periodic part of continued fraction for square root of a(n) %e A351652 -- ---- ----------------------------------------------------------- %e A351652 1 1 {} %e A351652 2 2 {2} %e A351652 3 4 {} %e A351652 4 3 {1,2} %e A351652 5 5 {4} %e A351652 6 9 {} %e A351652 7 6 {2, 4} %e A351652 8 10 {6} %e A351652 9 7 {1, 1, 1, 4} %e A351652 10 11 {3, 6} %e A351652 11 8 {1, 4} %t A351652 pcf[m_]:=If[IntegerQ[Sqrt@m],{},Last@ContinuedFraction@Sqrt@m]; %t A351652 a[1]=1;a[n_]:=a[n]=(k=2;While[MemberQ[Array[a,n-1],k]||Intersection[pcf@a[n-1],pcf@k]!={},k++];k);Array[a,100] %Y A351652 Cf. A121339, A349637. %K A351652 nonn %O A351652 1,2 %A A351652 _Giorgos Kalogeropoulos_, Feb 16 2022