cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A351665 Discriminants of imaginary quadratic fields with class number 27 (negated).

This page as a plain text file.
%I A351665 #22 Feb 16 2025 08:34:03
%S A351665 983,1231,1399,1607,1759,1879,1999,3271,3299,3943,4903,6007,6011,7699,
%T A351665 8867,10531,10939,11003,11027,11383,11491,11779,11939,13411,14243,
%U A351665 14723,15107,15739,16411,16547,17443,17627,17659,17747,18587,18787,18859,19051,19427
%N A351665 Discriminants of imaginary quadratic fields with class number 27 (negated).
%C A351665 Sequence contains 93 terms; largest is 103387.
%C A351665 The class group of Q[sqrt(-d)] is isomorphic to C_9 X C_3 for d = 3299, 19427, 34603, 89923, and 98443. For all other d in this sequence, the class group of Q[sqrt(-d)] is isomorphic to C_27.
%H A351665 Andy Huchala, <a href="/A351665/b351665.txt">Table of n, a(n) for n = 1..93</a>
%H A351665 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/ClassNumber.html">Class Number</a>
%o A351665 (Sage)
%o A351665 ls = [(QuadraticField(-n, 'a').discriminant(), QuadraticField(-n, 'a').class_number()) for n in (0..10000) if is_fundamental_discriminant(-n) and not is_square(n)];
%o A351665 [-a[0] for a in ls if a[1] == 27]
%o A351665 (PARI) isok(n) = {isfundamental(-n) && quadclassunit(-n).no == 27}; \\ _Michel Marcus_, Mar 02 2022
%Y A351665 Cf. A006203, A013658, A014602, A014603, A046002-A046020, A046125, A056987, A351664.
%K A351665 nonn,fini,full
%O A351665 1,1
%A A351665 _Andy Huchala_, Feb 16 2022