cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A351667 Discriminants of imaginary quadratic fields with class number 29 (negated).

This page as a plain text file.
%I A351667 #12 Feb 16 2025 08:34:03
%S A351667 887,2287,2311,2383,2939,3583,3659,3823,4451,4519,5051,5743,6947,7207,
%T A351667 7643,7687,8863,8963,9323,12323,13763,13883,14387,15139,15227,15443,
%U A351667 15467,15859,16427,17491,20483,20507,22051,23059,23251,24859,25523,28403,29587,29723
%N A351667 Discriminants of imaginary quadratic fields with class number 29 (negated).
%C A351667 Sequence contains 83 terms; largest is 166147.
%C A351667 The class group of Q[sqrt(-d)] is isomorphic to C_29 for all d in this sequence.
%H A351667 Andy Huchala, <a href="/A351667/b351667.txt">Table of n, a(n) for n = 1..83</a>
%H A351667 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/ClassNumber.html">Class Number</a>
%o A351667 (Sage)
%o A351667 ls = [(QuadraticField(-n, 'a').discriminant(), QuadraticField(-n, 'a').class_number()) for n in (0..10000) if is_fundamental_discriminant(-n) and not is_square(n)];
%o A351667 [-a[0] for a in ls if a[1] == 29]
%Y A351667 Cf. A006203, A013658, A014602, A014603, A046002-A046020, A046125, A056987, A351664-A351666.
%K A351667 nonn,fini,full
%O A351667 1,1
%A A351667 _Andy Huchala_, Mar 24 2022