cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A351669 Discriminants of imaginary quadratic fields with class number 31 (negated).

This page as a plain text file.
%I A351669 #10 Feb 16 2025 08:34:03
%S A351669 719,911,2927,3251,3727,3779,4159,4951,5651,6131,6491,7639,8647,9203,
%T A351669 10427,11863,12347,12923,13043,13219,13687,14627,14731,15923,17987,
%U A351669 18803,19219,20611,24691,24979,28051,32083,32363,35491,38851,39667,39883,41227,41539
%N A351669 Discriminants of imaginary quadratic fields with class number 31 (negated).
%C A351669 Sequence contains 73 terms; largest is 133387.
%C A351669 The class group of Q[sqrt(-d)] is isomorphic to C_31 for all d in this sequence.
%H A351669 Andy Huchala, <a href="/A351669/b351669.txt">Table of n, a(n) for n = 1..73</a>
%H A351669 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/ClassNumber.html">Class Number</a>
%o A351669 (Sage)
%o A351669 ls = [(QuadraticField(-n, 'a').discriminant(), QuadraticField(-n, 'a').class_number()) for n in (0..10000) if is_fundamental_discriminant(-n) and not is_square(n)];
%o A351669 [-a[0] for a in ls if a[1] == 31]
%Y A351669 Cf. A006203, A013658, A014602, A014603, A046002-A046020, A046125, A056987, A351664.
%K A351669 nonn,fini,full
%O A351669 1,1
%A A351669 _Andy Huchala_, Mar 24 2022