This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A351673 #11 Feb 16 2025 08:34:03 %S A351673 1031,1223,2087,2239,2543,4259,4931,5171,5939,6899,7211,7451,7523, %T A351673 8219,8363,8699,9007,9419,10979,11411,11503,12007,14939,15803,16451, %U A351673 16651,17123,18451,19259,20731,22787,23011,24203,24547,26387,26723,28411,33619,36643 %N A351673 Discriminants of imaginary quadratic fields with class number 35 (negated). %C A351673 Sequence contains 103 terms; largest is 210907. %C A351673 The class group of Q[sqrt(-d)] is isomorphic to C_35 for all d in this sequence. %H A351673 Andy Huchala, <a href="/A351673/b351673.txt">Table of n, a(n) for n = 1..103</a> %H A351673 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/ClassNumber.html">Class Number</a> %o A351673 (Sage) %o A351673 ls = [(QuadraticField(-n, 'a').discriminant(), QuadraticField(-n, 'a').class_number()) for n in (0..10000) if is_fundamental_discriminant(-n) and not is_square(n)]; %o A351673 [-a[0] for a in ls if a[1] == 35] %Y A351673 Cf. A006203, A013658, A014602, A014603, A046002-A046020, A046125, A056987, A351664. %K A351673 nonn,fini,full %O A351673 1,1 %A A351673 _Andy Huchala_, Mar 25 2022