cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A351673 Discriminants of imaginary quadratic fields with class number 35 (negated).

This page as a plain text file.
%I A351673 #11 Feb 16 2025 08:34:03
%S A351673 1031,1223,2087,2239,2543,4259,4931,5171,5939,6899,7211,7451,7523,
%T A351673 8219,8363,8699,9007,9419,10979,11411,11503,12007,14939,15803,16451,
%U A351673 16651,17123,18451,19259,20731,22787,23011,24203,24547,26387,26723,28411,33619,36643
%N A351673 Discriminants of imaginary quadratic fields with class number 35 (negated).
%C A351673 Sequence contains 103 terms; largest is 210907.
%C A351673 The class group of Q[sqrt(-d)] is isomorphic to C_35 for all d in this sequence.
%H A351673 Andy Huchala, <a href="/A351673/b351673.txt">Table of n, a(n) for n = 1..103</a>
%H A351673 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/ClassNumber.html">Class Number</a>
%o A351673 (Sage)
%o A351673 ls = [(QuadraticField(-n, 'a').discriminant(), QuadraticField(-n, 'a').class_number()) for n in (0..10000) if is_fundamental_discriminant(-n) and not is_square(n)];
%o A351673 [-a[0] for a in ls if a[1] == 35]
%Y A351673 Cf. A006203, A013658, A014602, A014603, A046002-A046020, A046125, A056987, A351664.
%K A351673 nonn,fini,full
%O A351673 1,1
%A A351673 _Andy Huchala_, Mar 25 2022