cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A351674 Discriminants of imaginary quadratic fields with class number 36 (negated).

This page as a plain text file.
%I A351674 #15 Feb 16 2025 08:34:03
%S A351674 959,1055,1295,1599,1727,1967,2199,2504,2516,2895,3055,3495,3656,3711,
%T A351674 3716,3896,3956,4164,4255,4280,4388,4472,4615,4619,4623,4664,4772,
%U A351674 5007,5048,5055,5063,5156,5240,5291,5316,5343,5455,5636,5732,5767,5960,6015,6055
%N A351674 Discriminants of imaginary quadratic fields with class number 36 (negated).
%C A351674 Sequence contains 668 terms; largest is 217627.
%C A351674 The class groups associated to 255 of the above discriminants are isomorphic to C_36, 374 have a class group isomorphic to C_18 X C_2, 16 have a class group isomorphic to C_12 X C_3, and the remaining 23 have a class group isomorphic to C_6 X C_6.
%H A351674 Andy Huchala, <a href="/A351674/b351674.txt">Table of n, a(n) for n = 1..668</a>
%H A351674 Mark Watkins, <a href="https://doi.org/10.1090/S0025-5718-03-01517-5">Class numbers of imaginary quadratic fields</a>, Mathematics of Computation, 73, pp. 907-938.
%H A351674 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/ClassNumber.html">Class Number</a>
%o A351674 (Sage)
%o A351674 ls = [(QuadraticField(-n, 'a').discriminant(), QuadraticField(-n, 'a').class_number()) for n in (0..10000) if is_fundamental_discriminant(-n) and not is_square(n)];
%o A351674 [-a[0] for a in ls if a[1] == 36]
%Y A351674 Cf. A006203, A013658, A014602, A014603, A046002-A046020, A046125, A056987, A351664-A351680.
%K A351674 nonn,fini,full
%O A351674 1,1
%A A351674 _Andy Huchala_, Mar 27 2022