This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A351675 #12 Feb 16 2025 08:34:03 %S A351675 1487,2447,3391,5839,6367,8147,9803,10739,12343,12583,12967,14767, %T A351675 15259,16927,18947,19403,20011,20147,21139,21587,22807,23371,23627, %U A351675 26731,28283,28307,31699,31723,36691,37171,37243,38371,39139,39451,40531,41659,42283,42443 %N A351675 Discriminants of imaginary quadratic fields with class number 37 (negated). %C A351675 Sequence contains 85 terms; largest is 158923. %C A351675 The class group of Q[sqrt(-d)] is isomorphic to C_37 for all d in this sequence. %H A351675 Andy Huchala, <a href="/A351675/b351675.txt">Table of n, a(n) for n = 1..85</a> %H A351675 Mark Watkins, <a href="https://doi.org/10.1090/S0025-5718-03-01517-5">Class numbers of imaginary quadratic fields</a>, Mathematics of Computation, 73, pp. 907-938. %H A351675 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/ClassNumber.html">Class Number</a> %o A351675 (Sage) %o A351675 ls = [(QuadraticField(-n, 'a').discriminant(), QuadraticField(-n, 'a').class_number()) for n in (0..10000) if is_fundamental_discriminant(-n) and not is_square(n)]; %o A351675 [-a[0] for a in ls if a[1] == 37] %Y A351675 Cf. A006203, A013658, A014602, A014603, A046002-A046020, A046125, A056987, A351664-A351680. %K A351675 nonn,fini,full %O A351675 1,1 %A A351675 _Andy Huchala_, Mar 27 2022