cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A351677 Discriminants of imaginary quadratic fields with class number 39 (negated).

This page as a plain text file.
%I A351677 #12 Feb 16 2025 08:34:03
%S A351677 1439,2207,2791,3767,3919,4111,5099,5119,6199,6779,9059,9967,10091,
%T A351677 10163,10399,10567,10667,11743,12539,13163,13523,14843,14867,15607,
%U A351677 16087,16139,16787,17383,18127,21851,23027,24499,26539,27827,30211,30347,30803,32027,32491
%N A351677 Discriminants of imaginary quadratic fields with class number 39 (negated).
%C A351677 Sequence contains 115 terms; largest is 253507.
%C A351677 The class group of Q[sqrt(-d)] is isomorphic to C_39 for all d in this sequence.
%H A351677 Andy Huchala, <a href="/A351677/b351677.txt">Table of n, a(n) for n = 1..115</a>
%H A351677 Mark Watkins, <a href="https://doi.org/10.1090/S0025-5718-03-01517-5">Class numbers of imaginary quadratic fields</a>, Mathematics of Computation, 73, pp. 907-938.
%H A351677 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/ClassNumber.html">Class Number</a>
%o A351677 (Sage)
%o A351677 ls = [(QuadraticField(-n, 'a').discriminant(), QuadraticField(-n, 'a').class_number()) for n in (0..10000) if is_fundamental_discriminant(-n) and not is_square(n)];
%o A351677 [-a[0] for a in ls if a[1] == 39]
%Y A351677 Cf. A006203, A013658, A014602, A014603, A046002-A046020, A046125, A056987, A351664-A351680.
%K A351677 nonn,fini,full
%O A351677 1,1
%A A351677 _Andy Huchala_, Mar 27 2022