cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A351678 Discriminants of imaginary quadratic fields with class number 40 (negated).

This page as a plain text file.
%I A351678 #11 Feb 16 2025 08:34:03
%S A351678 1271,1839,2255,2415,2559,2751,2756,2919,2936,2959,3044,3135,3255,
%T A351678 3399,3423,3524,3704,3927,4004,4047,4071,4407,4607,4760,4807,4820,
%U A351678 4836,4856,5060,5143,5191,5304,5367,5727,6020,6036,6212,6324,6807,6980,6996,7063,7080
%N A351678 Discriminants of imaginary quadratic fields with class number 40 (negated).
%C A351678 Sequence contains 912 terms; largest is 260947.
%C A351678 The class groups associated to 251 of the above discriminants are isomorphic to C_40, 438 have a class group isomorphic to C_20 X C_2, and the remaining 223 have a class group isomorphic to C_10 X C_2 X C_2.
%H A351678 Andy Huchala, <a href="/A351678/b351678.txt">Table of n, a(n) for n = 1..912</a>
%H A351678 Mark Watkins, <a href="https://doi.org/10.1090/S0025-5718-03-01517-5">Class numbers of imaginary quadratic fields</a>, Mathematics of Computation, 73, pp. 907-938.
%H A351678 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/ClassNumber.html">Class Number</a>
%o A351678 (Sage)
%o A351678 ls = [(QuadraticField(-n, 'a').discriminant(), QuadraticField(-n, 'a').class_number()) for n in (0..10000) if is_fundamental_discriminant(-n) and not is_square(n)];
%o A351678 [-a[0] for a in ls if a[1] == 40]
%Y A351678 Cf. A006203, A013658, A014602, A014603, A046002-A046020, A046125, A056987, A351664-A351680.
%K A351678 nonn,fini,full
%O A351678 1,1
%A A351678 _Andy Huchala_, Mar 27 2022