cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A351679 Discriminants of imaginary quadratic fields with class number 41 (negated).

This page as a plain text file.
%I A351679 #11 Feb 16 2025 08:34:03
%S A351679 1151,2551,2719,3079,3319,3511,6143,9319,9467,10499,10903,11047,11483,
%T A351679 11719,11987,12227,12611,13567,14051,14411,14887,14983,16067,16187,
%U A351679 19763,20407,20771,21487,22651,24971,25171,26891,26987,27739,28547,29059,29251,30859
%N A351679 Discriminants of imaginary quadratic fields with class number 41 (negated).
%C A351679 Sequence contains 109 terms; largest is 296587.
%C A351679 The class group of Q[sqrt(-d)] is isomorphic to C_41 for all d in this sequence.
%H A351679 Andy Huchala, <a href="/A351679/b351679.txt">Table of n, a(n) for n = 1..109</a>
%H A351679 Mark Watkins, <a href="https://doi.org/10.1090/S0025-5718-03-01517-5">Class numbers of imaginary quadratic fields</a>, Mathematics of Computation, 73, pp. 907-938.
%H A351679 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/ClassNumber.html">Class Number</a>
%o A351679 (Sage)
%o A351679 ls = [(QuadraticField(-n, 'a').discriminant(), QuadraticField(-n, 'a').class_number()) for n in (0..10000) if is_fundamental_discriminant(-n) and not is_square(n)];
%o A351679 [-a[0] for a in ls if a[1] == 41]
%Y A351679 Cf. A006203, A013658, A014602, A014603, A046002-A046020, A046125, A056987, A351664-A351680.
%K A351679 nonn,fini,full
%O A351679 1,1
%A A351679 _Andy Huchala_, Mar 28 2022