cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A351680 Discriminants of imaginary quadratic fields with class number 42 (negated).

This page as a plain text file.
%I A351680 #11 Feb 16 2025 08:34:03
%S A351680 1959,2183,2911,3039,3176,3687,3831,4039,4103,4184,4735,4904,4952,
%T A351680 5288,5935,5959,6179,6452,6487,6611,6623,6632,6836,7447,7604,7811,
%U A351680 7892,7988,8459,8552,8579,8744,8852,9368,9428,9607,10231,10643,10772,10996,11023,11099
%N A351680 Discriminants of imaginary quadratic fields with class number 42 (negated).
%C A351680 Sequence contains 339 terms; largest is 280267.
%C A351680 The class group of Q[sqrt(-d)] is isomorphic to C_42 for all d in this sequence.
%H A351680 Andy Huchala, <a href="/A351680/b351680.txt">Table of n, a(n) for n = 1..339</a>
%H A351680 Mark Watkins, <a href="https://doi.org/10.1090/S0025-5718-03-01517-5">Class numbers of imaginary quadratic fields</a>, Mathematics of Computation, 73, pp. 907-938.
%H A351680 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/ClassNumber.html">Class Number</a>
%o A351680 (Sage)
%o A351680 ls = [(QuadraticField(-n, 'a').discriminant(), QuadraticField(-n, 'a').class_number()) for n in (0..10000) if is_fundamental_discriminant(-n) and not is_square(n)];
%o A351680 [-a[0] for a in ls if a[1] == 42]
%Y A351680 Cf. A006203, A013658, A014602, A014603, A046002-A046020, A046125, A056987, A351664-A351679.
%K A351680 nonn,fini,full
%O A351680 1,1
%A A351680 _Andy Huchala_, Mar 28 2022