cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A351681 Stirling transform of {1, primes}.

This page as a plain text file.
%I A351681 #15 May 07 2022 09:40:32
%S A351681 1,3,10,38,163,774,4004,22315,132836,838378,5574797,38861142,
%T A351681 282951538,2146361911,16931303262,138694760316,1178400013929,
%U A351681 10373294706788,94511288422822,890334527133081,8663213736312460,86975649078035438,899960154388259079,9586293761594853220
%N A351681 Stirling transform of {1, primes}.
%F A351681 E.g.f.: exp(x) - 1 + Sum_{k>=2} prime(k-1) * (exp(x) - 1)^k / k!.
%F A351681 a(n) = Sum_{k=1..n} Stirling2(n,k) * A008578(k).
%t A351681 nmax = 24; CoefficientList[Series[Exp[x] - 1 + Sum[Prime[k - 1] (Exp[x] - 1)^k/k!, {k, 2, nmax}], {x, 0, nmax}], x] Range[0, nmax]! // Rest
%t A351681 Table[Sum[StirlingS2[n, k] If[k == 1, 1, Prime[k - 1]], {k, 1, n}], {n, 1, 24}]
%Y A351681 Cf. A008578, A307771, A353406.
%K A351681 nonn
%O A351681 1,2
%A A351681 _Ilya Gutkovskiy_, May 07 2022