cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A351682 Prime numbers p such that the (p-1)-st Bell number B(p-1) is a primitive root modulo p.

This page as a plain text file.
%I A351682 #30 May 05 2023 01:43:17
%S A351682 2,3,11,13,17,19,29,31,47,53,71,103,113,127,131,137,139,149,173,179,
%T A351682 181,191,211,233,239,241,251,257,263,269,293,317,347,367,379,401,431,
%U A351682 439,449,461,503,509,523,541,557,587,607,617,619,647,653,683,691,733,743,761,773,797,821,823,827,853,859,881,919,929
%N A351682 Prime numbers p such that the (p-1)-st Bell number B(p-1) is a primitive root modulo p.
%C A351682 Heuristically, the density of the sequence in the primes should approach Artin's constant: 0.3739558136...
%H A351682 Robert Israel, <a href="/A351682/b351682.txt">Table of n, a(n) for n = 1..500</a>
%e A351682 For n = 2 one has a(2) = 3 since B(2) = 2 is a primitive root modulo 3.
%p A351682 filter:= proc(p) local b;
%p A351682   b:= combinat:-bell(p-1);
%p A351682   numtheory:-order(b,p) = p-1
%p A351682 end proc:
%p A351682 select(filter, [seq(ithprime(i),i=1..200)]); # _Robert Israel_, May 04 2023
%Y A351682 Cf. A000110, A005596, A350429.
%K A351682 nonn
%O A351682 1,1
%A A351682 _Luis H. Gallardo_, May 04 2022
%E A351682 Corrected by _Robert Israel_, May 04 2023