This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A351703 #33 May 13 2022 18:20:36 %S A351703 1,1,1,1,0,4,1,0,1,21,1,0,0,3,148,1,0,0,1,12,1305,1,0,0,0,4,70,13806, %T A351703 1,0,0,0,1,10,465,170401,1,0,0,0,0,5,40,3591,2403640,1,0,0,0,0,1,15, %U A351703 315,31948,38143377,1,0,0,0,0,0,6,35,2296,319068,672552730 %N A351703 Square array T(n,k), n >= 0, k >= 1, read by antidiagonals, where column k is the expansion of e.g.f. 1/(1 - x^k * exp(x) / k!). %F A351703 T(0,k) = 1 and T(n,k) = binomial(n,k) * Sum_{j=0..n-k} binomial(n-k,j) * T(j,k) for n > 0. %F A351703 T(n,k) = n! * Sum_{j=0..floor(n/k)} j^(n-k*j)/(k!^j * (n-k*j)!). - _Seiichi Manyama_, May 13 2022 %e A351703 Square array begins: %e A351703 1, 1, 1, 1, 1, 1, ... %e A351703 1, 0, 0, 0, 0, 0, ... %e A351703 4, 1, 0, 0, 0, 0, ... %e A351703 21, 3, 1, 0, 0, 0, ... %e A351703 148, 12, 4, 1, 0, 0, ... %e A351703 1305, 70, 10, 5, 1, 0, ... %e A351703 13806, 465, 40, 15, 6, 1, ... %o A351703 (PARI) T(n, k) = if(n==0, 1, binomial(n, k)*sum(j=0, n-k, binomial(n-k, j)*T(j, k))); %o A351703 (PARI) T(n, k) = n!*sum(j=0, n\k, j^(n-k*j)/(k!^j*(n-k*j)!)); \\ _Seiichi Manyama_, May 13 2022 %Y A351703 Column k=1..5 gives A006153, A346888, A346889, A346890, A346893. %Y A351703 Cf. A143398, A351761. %K A351703 nonn,tabl %O A351703 0,6 %A A351703 _Seiichi Manyama_, Feb 20 2022