cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A351706 For any nonnegative number n with binary expansion Sum_{k >= 0} b_k * 2^k, a(n) is the denominator of d(n) = Sum_{k >= 0} b_k * 2^A130472(k). See A351705 for the numerators.

Original entry on oeis.org

1, 1, 2, 2, 1, 1, 2, 2, 4, 4, 4, 4, 4, 4, 4, 4, 1, 1, 2, 2, 1, 1, 2, 2, 4, 4, 4, 4, 4, 4, 4, 4, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 1, 1, 2, 2, 1, 1, 2, 2, 4, 4, 4, 4, 4, 4, 4, 4, 1, 1, 2, 2, 1, 1, 2
Offset: 0

Views

Author

Rémy Sigrist, Feb 16 2022

Keywords

Comments

The function d is a bijection from the nonnegative integers to the nonnegative dyadic rationals satisfying d(A000695(n)) = n for any n >= 0.

Examples

			For n = 13:
- 13 = 2^0 + 2^2 + 2^3,
- A130472(0) = 0, A130472(2) = 1, A130472(3) = -2,
- d(13) = 2^0 + 2^1 + 2^-2 = 13/4,
- so a(13) = 4.
		

Crossrefs

Programs

  • PARI
    a(n) = { my (d=0, k); while (n, n-=2^k=valuation(n,2); d+=2^((-1)^k*(k+1)\2)); denominator(d) }

Formula

a(A000695(n)) = 1.
a(2^k) = A072345(k) for any k >= 0.
a(2^k-1) = A016116(k) for any k >= 0.