cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A351707 G.f. A(x) satisfies: A(x) = 1 + x + x^2 + x^3 + x^4 * A(x/(1 - x)) / (1 - x)^2.

This page as a plain text file.
%I A351707 #5 Feb 18 2022 03:03:59
%S A351707 1,1,1,1,1,3,7,15,31,65,147,373,1051,3157,9761,30573,96965,313999,
%T A351707 1049719,3654303,13284783,50268837,196638987,789611161,3238765671,
%U A351707 13540348965,57710600953,251163156089,1118308871001,5100825621147,23838465463447,114044805729151
%N A351707 G.f. A(x) satisfies: A(x) = 1 + x + x^2 + x^3 + x^4 * A(x/(1 - x)) / (1 - x)^2.
%F A351707 a(0) = ... = a(3) = 1; a(n) = Sum_{k=0..n-4} binomial(n-3,k+1) * a(k).
%t A351707 nmax = 31; A[_] = 0; Do[A[x_] = 1 + x + x^2 + x^3 + x^4 A[x/(1 - x)]/(1 - x)^2 + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x]
%t A351707 a[n_] := a[n] = If[n < 4, 1, Sum[Binomial[n - 3, k + 1] a[k], {k, 0, n - 4}]]; Table[a[n], {n, 0, 31}]
%Y A351707 Cf. A040027, A210541, A351437, A351660.
%K A351707 nonn
%O A351707 0,6
%A A351707 _Ilya Gutkovskiy_, Feb 16 2022