cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A351724 Number of compositions of n into parts of size 1, 5, 10 or 25.

This page as a plain text file.
%I A351724 #10 Jun 10 2024 00:22:55
%S A351724 1,1,1,1,1,2,3,4,5,6,9,13,18,24,31,42,58,80,109,146,197,268,366,499,
%T A351724 676,916,1243,1690,2299,3122,4237,5751,7811,10614,14418,19580,26587,
%U A351724 36106,49043,66614,90473,122869,166866,226632,307810,418060,567784,771122,1047296,1422396,1931845
%N A351724 Number of compositions of n into parts of size 1, 5, 10 or 25.
%C A351724 Starts to differ from A114044 at n=50.
%H A351724 <a href="/index/Mag#change">Index entries for sequences related to making change.</a>
%H A351724 <a href="/index/Rec#order_25">Index entries for linear recurrences with constant coefficients</a>, signature (1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1).
%F A351724 G.f. : 1/(1-x-x^5-x^10-x^25).
%F A351724 a(n) = +a(n-1) +a(n-5) +a(n-10) +a(n-25).
%e A351724 a(8)=5 counts 5 compositions 1+1+1+1+1+1+1+1 = 1+1+1+5 = 1+1+5+1 = 1+5+1+1 = 5+1+1+1.
%Y A351724 Cf. A114044 (parts 50 and 100 admitted), A001299 (partitions).
%Y A351724 Row sums of A351726.
%K A351724 nonn,easy
%O A351724 0,6
%A A351724 _R. J. Mathar_, Feb 17 2022