This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A351726 #13 Feb 17 2022 11:40:28 %S A351726 1,0,1,0,0,1,0,0,0,1,0,0,0,0,1,0,1,0,0,0,1,0,0,2,0,0,0,1,0,0,0,3,0,0, %T A351726 0,1,0,0,0,0,4,0,0,0,1,0,0,0,0,0,5,0,0,0,1,0,1,1,0,0,0,6,0,0,0,1,0,0, %U A351726 2,3,0,0,0,7,0,0,0,1,0,0,0,3,6,0,0,0,8,0,0,0,1,0,0,0,0,4 %N A351726 Table T(n,k) read by rows: number of compositions of n into k parts of size 1, 5, 10 or 25. %H A351726 L. Zhiwen, <a href="https://math.stackexchange.com/questions/4380108/expect-coin-value-probelm-a-variant-of-coin-change-problem">Expect coin value problem (a variant of coin exchange problem)</a>, math.stackexchange Feb 12, 2022. %H A351726 <a href="/index/Mag#change">Index entries for sequences related to making change.</a> %F A351726 T(n,0) = 0 if k>0. %F A351726 G.f.: 1/(1-y*g(x)) where g(x)=x+x^5+x^10+x^25 is the g.f. of column k=1. %e A351726 T(7,3)=3 counts 1+1+5 =1+5+1 =5+1+1. %e A351726 T(10,2)=1 counts 5+5. %e A351726 T(12,3)=3 counts 1+1+10 =1+10+1 =10+1+1. %e A351726 T(15,3)=1 counts 5+5+5. %e A351726 T(16,3)=6 counts 1+5+10 =1+10+5 =5+1+10 =5+10+1 =10+1+5 =10+5+1. %e A351726 The triangle starts in row n=0 and columns 0<=k<=n: %e A351726 1 %e A351726 0 1 %e A351726 0 0 1 %e A351726 0 0 0 1 %e A351726 0 0 0 0 1 %e A351726 0 1 0 0 0 1 %e A351726 0 0 2 0 0 0 1 %e A351726 0 0 0 3 0 0 0 1 %e A351726 0 0 0 0 4 0 0 0 1 %e A351726 0 0 0 0 0 5 0 0 0 1 %e A351726 0 1 1 0 0 0 6 0 0 0 1 %e A351726 0 0 2 3 0 0 0 7 0 0 0 1 %e A351726 0 0 0 3 6 0 0 0 8 0 0 0 1 %e A351726 0 0 0 0 4 10 0 0 0 9 0 0 0 1 %e A351726 0 0 0 0 0 5 15 0 0 0 10 0 0 0 1 %e A351726 0 0 2 1 0 0 6 21 0 0 0 11 0 0 0 1 %e A351726 0 0 0 6 4 0 0 7 28 0 0 0 12 0 0 0 1 %e A351726 0 0 0 0 12 10 0 0 8 36 0 0 0 13 0 0 0 1 %e A351726 0 0 0 0 0 20 20 0 0 9 45 0 0 0 14 0 0 0 1 %e A351726 0 0 0 0 0 0 30 35 0 0 10 55 0 0 0 15 0 0 0 1 %e A351726 0 0 1 3 1 0 0 42 56 0 0 11 66 0 0 0 16 0 0 0 1 %e A351726 0 0 0 3 12 5 0 0 56 84 0 0 12 78 0 0 0 17 0 0 0 1 %e A351726 0 0 0 0 6 30 15 0 0 72 120 0 0 13 91 0 0 0 18 0 0 0 1 %Y A351726 Cf. A351724 (row sums), A351725 (partitions). %K A351726 nonn,easy,tabl %O A351726 0,24 %A A351726 _R. J. Mathar_, Feb 17 2022